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Abstract

We utilize a multiphase model, CON-AIR (Condense Phase to Air Transfer Model),
to show that the photochemistry of nitrate (NO−

3 ) in and on ice and snow surfaces,
specifically the quasi-liquid layer (QLL), can account for NOx volume fluxes, concen-
trations, and [NO]/[NO2](γ=[NO]/[NO2]) measured just above the Arctic and coastal5

Antarctic snowpack. Maximum gas phase NOx volume fluxes, concentrations and γ
simulated for spring and summer range from 5.0×104 to 6.4×105 molecules cm−3 s−1,
5.7×108 to 4.8×109 molecules cm−3, and ∼0.8 to 2.2, respectively, which are compara-
ble to gas phase NOx volume fluxes, concentrations and γ measured in the field. The
model incorporates the appropriate actinic solar spectrum, thereby properly weighting10

the different rates of photolysis of NO−
3 and NO−

2 . This is important since the imme-
diate precursor for NO, for example, NO−

2 , absorbs at wavelengths longer than nitrate
itself. Finally, one-dimensional model simulations indicate that both gas phase bound-
ary layer NO and NO2 exhibit a negative concentration gradient as a function of height
although [NO]/[NO2] are approximately constant. This gradient is primarily attributed15

to gas phase reactions of NOx with halogens oxides (i.e., as BrO and IO), HOx, and
hydrocarbons, such as CH3O2.

1 Introduction

Interest in the nitrogen cycle over the polar regions was revitalized due to elevated
NOx(NO+NO2) levels detected in and above snowpacks (Honrath et al., 1999; Jones20

et al., 2000). Absorbing at λ≥290 nm, nitrate (NO−
3 ) is one of the dominant anions

present in the snowpack with approximately an even surface distribution with latitude
and longitude at both polar regions (Legrand and Meyeski, 1997; Mulvaney et al.,
1998). Due to production and long-range transport, nitrate concentrations at the Arctic
(∼10µM) are higher than those measured at coastal Antarctica (∼5µM). Through solar25

photolysis, nitrate is a major source of NOx emissions from the snowpack. NOx mixing
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ratios within and above the snowpack are proportional to NOx production rates, time
of day, and temperature (Cotter et al., 2003; Jones et al., 2000). Consequently, nitrate
photochemistry has been the focus of a series of field (Honrath et al., 1999; Honrath et
al., 2000a; Jones et al., 2000; Davis et al., 2001; Zhou et al., 2001; Dibb et al., 2002;
Qiu et al., 2002; Honrath et al., 2002; Beine et al., 2002; Beine et al., 2003; Jacobi et5

al., 2004; Davis et al., 2004; Dibb et al., 2004) and laboratory experiments (Honrath
et al., 2000b; Dubowski et al., 2001; Dubowski et al., 2002; Chu and Anastasio, 2003,
Boxe et al., 2003; Boxe et al., 2005; Boxe et al., 2006; Jacobi et al., 2006; Jacobi and
Hilker 2007).

If nitrate depth profiles in polar ice were preserved over time, they would provide10

a valuable record of global paleoatmospheres. However, physical and photochemical
processing of nitrate can alter its surface and near-surface concentrations, especially
at low-accumulation sites (Blunier et al., 2005), and possibly compromise its oxygen
isotopic signature (McCabe et al., 2005). While the photochemistry of nitrate in the
snowpack has significant implications for tropospheric chemistry, since its photoprod-15

ucts, NO and NO2, are intimately linked to reactions involving ozone, hydrocarbons and
halogens, this process also generates OH radicals Reaction (R8), which can oxidize
organic matter within snowpacks, leading to the formation of oxidized hydrocarbons
(e.g., formaldehyde, acetaldehyde, acetone) (Dominé and Shepson, 1999; Sumner
and Shepson, 2002; Grannas et al., 2004). In addition, HONO has been measured20

in the polar regions (Zhou et al., 2001; Honrath et al., 2002; Amoroso et al., 2006;
Clemitshaw, 2006), where it has also been suggested as a possible byproduct of ni-
trate photolysis (Zhou et al., 2001). Yet, actual HONO concentrations and its source at
polar sites have been debated (Chen et al., 2004; Dibb et al., 2004; Liao et al., 2006;
Jacobi et al., 2007).25

It is clear that overlying boundary layer chemistry is affected by photochemistry oc-
curring at the snowpack at polar regions. A useful tool to study specified photochemical
mechanisms occurring in the snowpack is to multiphase model boundary layer chem-
istry linked to chemistry at the snowpack surface, which requires a physicochemical
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understanding of ice surfaces. The ice-air interface of solids is an area that exhibits
characteristics different from those of the bulk material. This is primarily due to the
fact that atoms (or molecules) at the surface only encounter bonding forces with other
molecules from one side; simultaneously, there is a similar imbalance at other inter-
faces. Furthermore, this behavior causes the dislocation of atoms from their original5

locations, alterations in their associated force and energy constants, and effects on
layers below the ice-air demarcation.

The fact that the boundary between the solid and vapor phase is wetted by a thin
liquid film causes the free energy of the boundary to be lower than it would be if the
thin liquid film were absent (Dash et al., 1995). As a result, if the surface of ice were10

initially dry, then it would reduce its interfacial free energy by converting a layer (e.g.,
the surface) of the solid to liquid. Hence, a liquid-like layer should exist over some
measurable and quantifiable temperature range on the surface of ice, below its bulk
normal melting temperature. The existence of the QLL is not prohibited due to its
thinness and closeness to the normal melting temperature of ice. The thickness of the15

QLL is present at a state where the free energy of the ice system is at a minimum
and is governed by the competition between the free energy of the ice surface and the
energy required to melt a solid layer.

The thickness of the QLL as a function of temperature has been quantified both ex-
perimentally (Doppenschmidt and Butt, 2000; Pittenger et al., 2001; Bluhm et al., 2002;20

Sadtchenko and Ewing, 2002) and theoretically (Ohnesorge et al., 1994; Landa et al.,
1995; Wettlaufer, 1999). With the single exception of Elbaum et al. (1993), whose ex-
periments were done on exposed horizontal facets in the prismatic orientation (101̄0),
these studies have shown that the QLL increases with increasing temperature. Addi-
tionally, impurities enhance its thickness (Doppenschmidt and Butt, 2000; Wettlaufer,25

1999). The addition of impurities at constant pressure will shift the normal melting
point of the bulk solid, which is directly dependent on the concentration of the impurity.
As the melting point is approached, the QLL appears to be indistinguishable from the
liquid phase in its uppermost layers.
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The QLL can play a pivotal role in environmental phenomena such as 1) controlling
the friction of ice and snow; 2) soil freezing, permafrost formation, and frost heave;
3) sintering and sliding in glaciers, sea-ice, and snow fields; and 4) behavior of atmo-
spheric ice (Dash et al., 1995). The QLL has also been suggested to contribute to
the electrification of thunder clouds via charge transfer at the liquid-ice interface (Baker5

and Dash, 1994). Abbatt et al. (1992) even proposed that polar stratospheric clouds
are able to accommodate HCl by dissolution in multilayer-thick quasi-liquid films, where
they can efficiently participate in ozone destruction during winter and spring months in
Antarctica and the Arctic.

As shown in Jones et al. (2007), spring and summertime maximum NOx volume10

fluxes range from ∼4.5×104 to ∼5.5×105 molecules cm−3 s−1. In addition, field mea-
surements of NOx range from ∼5.7×108 to ∼2.9×109 molecules cm−3 and exhibit
[NO]/[NO2] (γ=[NO]/[NO2]) from ∼0.8 to ∼2.0 (Honrath et al., 1999; Jones et al., 2000;
Beine et al., 2002; Dibb et al., 2002; Honrath et al., 2002; Simpson et al., 2007). In
this study, we use CON-AIR to show that nitrate photochemistry in the QLL does simu-15

late well NOx volume fluxes, concentrations, and γ measured just above the snowpack
(i.e., at ∼25 cm) at various sites in the Arctic and coastal Antarctica. The implications
of these findings are also discussed.

2 Model description

CON-AIR is a multiphase model that treats the interaction of gas phase boundary layer20

chemistry with condense phase chemistry and photochemistry in and on snow and ice
surfaces, specifically the QLL. As described previously, here the QLL is defined as a
thin layer on the surface of snow and ice, where water molecules are not in a rigid
solid structure, yet not in the random order of a liquid (Petrenko and Whitworth, 1999),
which, in our model, is the demarcation between the vapor and bulk ice phase. It is25

structured in two main components: i) condense phase chemistry and photochemistry
regime in the QLL; and ii) gas phase chemistry scheme comprising photochemical,
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thermal, and heterogeneous reactions.
The exchange of nitrogen species between the QLL and the atmosphere de-

pends on the respective Henry’s law constants of species including NO and NO2.
The Henry’s law solubility constants and temperature dependences for the gas

phase equilibrating species NO and NO2 are 1.9×10−3×e(1500(1/T−1/To)) M atm−1 and5

6.4×10−3e(2500(1/T−1/To)) M atm−1, respectively (Schwartz and White, 1981; Lelieveld
and Crutzen, 1991). The temperature dependence of the solubility of species is
taken into account by including a diurnal variation of the typical temperature profile
of both the Arctic and coastal Antarctic region during spring and summertime (i.e.,
250≤T /K≤265). A description of the radiation and gas phase scheme, and a com-10

plete set of all gas phase reactions employed in the model are summarized in Table 1
of the supplementary material.http://www.atmos-chem-phys-discuss.net/8/6009/2008/
acpd-8-6009-2008-supplement.pdf

2.1 Condense phase scheme and QLL parameterizations

As described in Saiz-Lopez and Boxe (2008), a description of the radiation and gas15

phase scheme, and a bulk concentrations of NO−
3 and NO−

2 at the Arctic and coastal
Antarctic snowpack are 1≤[NO−

3 ]/µM≤17 and ∼1 nM, respectively (Stotlemyer and
Toczydlowski, 1990; Jaffe and Zukowski, 1993; Li, 1993; Silvente and Legrand, 1995;
De Angelis and Legrand, 1995; Dibb et al., 1998; Jones et al., 2007). A number of
laboratory experiments have provided evidence that the photolysis of nitrate transpires20

in the QLL on the surface of ice crystals (Dubowski et al., 2001; Dubowski et al., 2002;
Boxe et al., 2003; Chu and Anastasio, 2003). In this study, we restrict our model sim-
ulations within the context that all condense phase reactions take place in the much
smaller volume of the QLL. Typical bulk concentrations of NO−

3 and NO−
2 measured in

the Arctic and coastal Antarctic snowpack were re-quantified following the formulation25
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established by Cho et al. (2002). Cho et al. (2002) derived the following equation

ψH2O(T ) =
mH2O RTf

1000H0
f

T
Tf − T

C0
T , (1)

which relates the fraction of liquid water (ψH2O) as a function of temperature (T ) and the

total solute concentration in the QLL (C0
T ).ψH2O(T ) is the fraction of water in the QLL as

a function of temperature, mH2O is the molecular weight of water (18.01 g/mole), R is5

the gas constant (8.314×10−3 kJ/K mole), H0
f is enthalpy of fusion of water (6 kJ/mole),

and Tf is the freezing temperature of water (273.15 K). Assuming that the total initial
concentrations of NO−

3 and NO−
2 reside in the QLL, we relate their respective bulk

concentrations (Cbulk) to their respective concentrations in the QLL via Eq. (2):

Cbulk = ψH2O(T )C0
T (2)10

Substituting Eq. (1) into Eq. (2), yields the following:

ψH2O(T ) =

√√√√mH2O RTf

1000H0
f

T
Tf − T

Cbulk . (3)

Then, given the upper limit Cbulk−upper−limit (=17.0001µM, [NO−
3 ]o=17µM and

[NO−
2 ]o=1 nM) and the lower limit Cbulk−lower−limit (=1.0001µM, [NO−

3 ]o=1µM and

[NO−
2 ]o=1 nM), we calculate 4.54×10−5 and 1.01×10−5 as the mean of the upper and15

lower limit ψH2O from 250 to 265 K, respectively, by using Eqs. (4) and (5):

mean of ψH2O−upper−limit=

i =265∑
i =250

√
mH2O RTf
1000H0

f

Ti
Tf−Ti

Cbulk−upper−limit

16
; (4)

mean of ψH2O−lower−limit =

i =265∑
i =250

√
mH2O RTf
1000H0

f

Ti
Tf − Ti

Cbulk−lower−limit

16
. (5)
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Summing the mean of ψH2O−upper−limit and the mean of ψH2O−lower−limit gives 5.55×10−5.

In CON-AIR, as an approximation, we incorporate the average of this sum, 2.78×10−5,
as the fraction of liquid water, representative for temperatures from 250 to 265 K. Tak-
ing the mean of the median of [NO−

3 ]o found in the Arctic (i.e., from 3 to 17µM) and
coastal Antarctic (i.e., from 1 to 9µM) yields 7.5µM. Then, as an estimation, we take5

[NO−
3 ]o=7.5µM and [NO−

2 ]o=1 nM as their initial bulk concentrations. Using Eq. (2), the
concentration of [NO−

3 ]o and [NO−
2 ]o in the QLL is 270 mM and 0.04 mM, respectively,

which we incorporate in CON-AIR as their initial concentrations.
Given our estimated ψH2O=2.78×10−5, we calculate a QLL thickness ∼14µm

by the following formulation: mean snow depth × snow column cross-sectional10

area × mass fraction of liquid water =54 cm×1 cm2×2.78×10−5=0.05 cm3; then,
0.00139 cm3/1 cm2=13.90µm∼14µm.

Here, snow depth is defined as the total combined depth of both old and new below
the snow-air interface. Using a mean snow depth of 54 cm and a snow density of
0.31 g cm−3 (Michalowski et al., 2000; Sumner and Shepson, 1999), the total potential15

liquid content in a snow column of 1 cm2 cross-sectional area of snowpack is:

total potential liquid content =
54 cm × 0.31 g cm−3

1 g cm−3
= 16.74 cm3 cm−2 (6)

The estimated fraction of liquid water is 2.78×10−5; therefore, the QLL volume on the
snowpack surface is:

QLL volume = 16.74 cm3 cm−2 × 2.78 × 10−5 = 4.65 × 10−4 cm3 cm−2 (7)20

To properly express aqueous phase reactions rates to QLL reaction rates, a volumetric
factor (volumetric) was estimated based on laboratory derived reaction rate enhance-
ment factors. A volumetric factor was quantified by taking the average of the upper limit
reaction rate enhancement factors obtained in the laboratory by Grannas et al. (2007)
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and Takenaka et al. (1996), 40 and 2.4×103, respectively, yielding

volumetric =
40 + 2.4 × 103

2
= 1.22 × 103 (8)

Therefore, the reaction rates are quantified by incorporating volumetric factor, volumet-
ric. The rate constants for reactions taking place in the QLL are:

k × volumetric, (9)5

k × volumetric2, (10)

where k are the actual literature aqueous phase rate constants in units of
cm3 molecule−1 s−1 and cm6 molecule−2 s−1, for second- and third-order rate con-
stants, respectively. Table 1 list the major reactions pertaining to nitrate photochemistry,
their condense phase reaction rates, and their QLL reaction rates.10

The rate constant for the transfer of species from the QLL to the gas phase is calcu-
lated using an approximation of the first order rate constant, kt=1.25×10−5 s−1 (Gong
et al., 1997; Michalowski et al., 2000). For a boundary layer height of 100 m (10 000 cm)

kmix = kt ×
4.65 × 10−4 cm3 (QLL)

10 000 cm3 (atmosphere)
(11)

Nevertheless, the rate of transfer of species will depend on the concentration and15

Henry’s law constants for solubility of the corresponding species. Hence, the com-
plete expression for the phase equilibration of species from the QLL to the atmosphere
is:

k(QLL→Atmosphere) = (kmix × [species concentration])/(H ′) , (12)

where H ′ is the dimensionless Henry’s law constant. H ′ is defined as H ′=(HRT ), where20

H is a species’ Henry’s law constant, R is the gas constant, 0.082058 L atm K−1 mol−1,
and T is the temperature (K).
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3 Results and discussion

The photochemistry of nitrate in the aqueous phase has been studied extensively (Mark
et al., 1996, Mack and Bolton, 1999). Dissolved nitrate has two primary absorption
bands in the ultraviolet (UV). The first occurs in the far UV via the strong π → π∗ tran-
sition, centered at 201 nm (εmax=9500 M−1 cm−1), and the second is a weaker absorp-5

tion band that occurs via the highly forbidden n → π∗ transition, centered at 302 nm
(εmax=7.14 M−1 cm−1). Furthermore, it was proposed that the weaker absorption band
may occur from the combination of a singlet and triplet n → π∗ and σ → π∗ transition
(Maria et al., 1973).

Mack and Bolton (1999) showed that the overall stoichiometry for nitrate irradiation10

is

NO−
3

hv−→ NO−
2 +

1
2

O2. (R1)

In the absence of .OH scavengers this stoichiometry is maintained over the entire pH
range (Wagner and Strehlow, 1980). For λ<280 nm, the major reaction pathway is
through isomerization of [NO−

3 ]∗, generated via Reaction (R2), to form ONOO−, per-15

oxynitrite, and at low pH, peroxynitrous acid, HONOO (R3). HONOO can also be
produced from the recombination of .OH and NO2 within a solvent cage as shown in
Reaction (R4). HONOO isomerizes rapidly back to NO−

3 (R5) (Mack and Bolton, 1999).

NO−
3

hv−→ [NO−
3 ]∗ (R2)20

NO−
3 −→ ONOO− + H+ + −→ HONOO (R3)

.OH + NO2 −→ HONOO (R4)

HONOO −→ NO−
3 + H+ (R5)

Yet, in the troposphere, all λ<290 nm is completely attenuated by stratospheric ozone.
Therefore, λ≥290 nm are pertinent for this study. In aqueous solutions at pH<6 and25
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λ≥290 nm, nitrate photolysis proceeds via two primary photolytic pathways as illus-
trated in Reactions (R6) and (R7), through the generation of nitrate in the excited state,
[NO−

3 ]∗, from Reaction (R2). As shown in Reaction (R8), O− reacts rapidly with water
to form the hydroxyl radical.

[NO−
3 ] ∗ +H+ −→ NO2 + O− (R6)5

[NO−
3 ]∗ −→ NO−

2 + O(3P) (R7)

O− + H2O −→ .OH + OH− (R8)

Atomic oxygen produced in Reaction (R7) can react with molecular oxygen ([O2]water
∼0.3 mM) via Reaction (R9) or with nitrate by way of Reaction (R10) (Warneck and
Wurzinger, 1988).10

O2 + O(3P) −→ O3 (R9)

NO−
3 + O(3P) −→ NO−

2 + O2 (R10)

Ozone, generated by Reaction (R9), is either consumed by reaction with NO−
2 (R11)

(Hoigne et al., 1985) or by decomposition to .OH (Hoigne et al., 1985).

NO−
2 + O3 −→ NO−

3 + O2 (R11)15

The UV absorption spectrum of nitrite displays three absorption bands: the first in-
volves a π → π∗ transition with maxima at 220 nm, and the latter two peaks are max-
ima at 318 nm (εmax=10.90 M−1 cm−1) and 354 nm (εmax=22.90 M−1 cm−1), both cor-
responding to n → π∗ transitions. Similar to nitrate, nitrite undergoes direct photolysis
as shown in Reaction (R12) to produce NO, and it also oxidizes by reaction with .OH20

via Reaction (R13).

NO−
2 + H+ hv−→ NO + .OH (R12)
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NO−
2 + .OH −→ NO2 + OH− (R13)

The photolysis of NO2 also produces NO (R14). We exclude this reaction from the
chemical scheme used in CON-AIR since its photolytic lifetime during midday spring
and summertime (1/JNO2

=1/4.6×10−3 sec−1≈217 sec) (Yung and DeMore, 1999) is

longer than its diffusion lifetime through a 14µm (or 14×10−4 cm) thick QLL. As cal-5

culated using the diffusion length Eq. (13) (Dubowski et al., 2001):

NO2
hv−→ NO + O(3P) (R14)

L =
√
Dτ ; τ =

(14 × 10−4cm)2

9.8 × 10−9 cm2s−1
≈ 200 sec (13)

L is the thickness of the QLL, D is the diffusion coefficient of NO2 [Dubowski et al.,
2001], and τ is the time it takes NO2 to diffuse through a thickness L. Using Eq. (13)10

shows that the maximum ice layer thickness where NO2 photolysis will not occur is

≈(9.8×10−9 cm2 s−1×217 s)1/2≈15µm. This estimation is further supported by previ-
ous findings, which have shown that NO2 produced from nitrate photolysis in the out-
ermost layers of thin ice films are readily released to the gas phase, compared to NO2
formed at deeper depths, which undergoes further chemical and photolytic processing15

[Dubowski et al., 2001; Boxe et al., 2005; Boxe et al., 2006]. Finally, the photoproduced
NO and NO2 are readily released to the gas phase after equilibration due to their low
solubility (R15).

NO2(QLL), NO(QLL)
escape−→ NO2(g),NO(g) (R15)

The protonation of nitrite to form nitrous acid (HONO(aq)) (R16) was also not considered20

in the QLL reaction mechanism since model simulations yielded γ∼1500, much larger
than any reported measurements from field studies (e.g., γ∼0.8 to ∼2.0) [Honrath et
al., 1999; Jones et al., 2000; Beine et al., 2002; Dibb et al., 2002; Honrath et al., 2002;
Jones et al., 2007; Simpson et al., 2007]. This result implies that a significant amount of
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HONO produced in the snowpack may be retained by matrix or solvent cage effects or
may be dependent on photosensitized organic compounds, such as possible reaction
cycles that may efficiently transfer electrons to NO2, possibly leading the production of
HONO (Beine et al., 2006). Presently, the mechanism of HONO formation from NO−

3 ,
is not well known.5

NO−
2 + H+ −→ HONO(aq) ⇔ HONO(g) (R16)

A simplified scheme illustrating the primary reactions governing NOx release from the
QLL film to the gas phase from nitrate photochemistry used in CON-AIR is shown
in Fig. 1. Laboratory studies have shown that the photochemistry of nitrate in ice is
analogous to its aqueous phase photochemistry (Dubowski et al., 2001; Dubowski et10

al., 2002; Chu and Anastasio et al., 2003; Boxe et al., 2006) Therefore, as shown in
Table 1, QLL reaction rates were quantified by scaling aqueous phase reaction rates
according to the micro-scopic dimensions of the QLL.

Laboratory studies have shown that nitrate is a source of NO and NO2 from ice sur-
faces (Honrath et al., 2000b; Dubowski et al., 2001; Dubowski et al., 2002; Chu and15

Anastasio, 2003; Boxe et al., 2003; Boxe et al., 2005; Boxe et al., 2006; Jacobi et al.,
2006; Jacobi and Hilker 2007). Only a small number of laboratory investigations of
nitrate photochemistry in ice were carried out to correlate their respective NO and NO2
fluxes with field measurements (Boxe et al., 2003; Boxe et al., 2006). Yet, these stud-
ies were restricted by high detection limits for NO and NO2 and the use of irradiation20

sources emitting at 313±20 nm (i.e., overlapping the absorption spectrum of nitrate),
resulting in higher NOx concentrations than measured in the field and much lower γ
(e.g., 0.043 to 0.0005) than those measured over the Arctic and Antarctic snowpack
(Boxe et al., 2003; Boxe et al., 2006). Compared to the typical initial nitrate concentra-
tions (1 to 17µM) and the typical actinic flux spectrum at Earth’s surface for the Arctic25

and coastal Antarctic regions, the higher initial nitrate concentrations (50 mM) and the
dissimilar actinic flux spectrum used, likely contributed to the disparity between these
laboratory results and those from the field. Figure 2 illustrates this disparity to some
extent by comparing the absorption spectrum for nitrate and nitrite and the actinic flux
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spectrum at the Earth’s surface. The surface irradiance is computed using a 2-stream
radiative transfer code (Thompson, 1984). We calculate the diurnal variation of JNO−

3

and JNO−
2

for snowpack summer and springtime conditions by extrapolating laboratory
modeled and measured JNO−

3
and JNO−

2
for ice, snowpack, and seawater (Zuo and

Deng, 1998; Qiu et al., 2002; King et al., 2005) to the radiative transfer code, coupled5

to CON-AIR, such that JNO−
3

and JNO−
2

vary as a function of solar zenith angle (or as
a function of time of day), therefore providing a more complete representation of ni-
trate photochemistry. Note, the smaller and larger summer/springtime diurnal profiles
of JNO−

3
were derived from extrapolating the lower and upper limits for the JNO−

3
val-

ues obtained for surface snow and sea-ice (Qiu et al., 2002; King et al., 2005), while10

the summer/springtime diurnal profile of JNO−
2

was derived from extrapolating the JNO−
2

value obtained for surface seawater (Zuo and Deng, 1998). Figure 3 illustrates a typical
diurnal profile for NO (e.g., maximum volume fluxes of 2.3×104 molecules cm−3 s−1 dur-
ing spring and 3.2×105 molecules cm−3 s−1 during summer) and NO2 (e.g., maximum
concentrations of 1.2×104 molecules cm−3 s−1 to 2.7×104 molecules cm−3 s−1 during15

spring and 1.8×105 to 3.2×105 molecules cm−3 s−1 during summer) over the Arctic and
Antarctic snowpack. These simulated NOx volume fluxes are comparable to field mea-
surements of Jones et al. (2007). Assuming a ∼100 m boundary height and taking the
median of the concentration of molecules between 250 and 265 K at atmospheric sur-
face pressure (1 atm or 1.01325×105 N m−2) (2.86×1019 molecules cm−3), simulated20

maximum concentrations of NOx, ∼5.7×108 to ∼4.8×109 molecules cm−3, agree well
with maximum concentrations of NOx measured just above the snowpack by field mea-
surements, ∼5.7×108 to ∼2.9×109 molecules cm−3, (Honrath et al., 1999; Jones et al.,
2000; Beine et al., 2002; Dibb et al., 2002; Honrath et al., 2002; Simpson et al., 2007).
It also accounts for the range of γ measured during Arctic and Antarctic summer and25

springtime, where springtime maximum γ ranges from ∼0.84 to ∼1.86 and summertime
maximum γ ranges from ∼0.50 to ∼2.20, which is also in good accord with measured γ
over the snowpack (Honrath et al., 1999; Jones et al., 2000; Beine et al., 2002; Dibb et
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al., 2002; Honrath et al., 2002; Simpson et al., 2007). Furthermore, these findings re-
inforce the fact that the immediate precursor for NO, likely NO−

2 , absorb at wavelengths
longer than nitrate itself, as shown in Fig. 2; thus, incorporating the actinic flux at the
Earth’s surface shows that nitrite is more photolabile than nitrate (Cotter et al., 2003).

Furthermore, we investigate the profile of gas phase boundary layer NO and NO25

as a function of height up to 20 m during the summertime over the snowpack using a
1-D model (Saiz-Lopez et al., 2007). Figure 4 shows that the model predicts a slight
negative gradient for both [NO] and [NO2], and γ remains approximately constant. The
gradient is the result of gas phase reactions of NOx with halogens oxides (i.e., BrO
and IO), HOx, and hydrocarbons (e.g., CH3O2) (Saiz-Lopez et al., 2007). Atmospheric10

stability and wind speed may also affect the concentration gradient of NOx above the
snowpack (Beine et al., 2002). However, constraining the 1-D model with the lower limit
summertime NO and NO2 volume fluxes derived from CON-AIR leads to good agree-
ment with recent summertime observations of NO and NO2 concentrations (13 ppt and
7 ppt as average noon values) and ratios ([NO]/[NO2] ∼1.8) obtained at a few meters15

above the coastal Antarctic snowpack (e.g., Jones et al., 2007).
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Table 1. QLL Reactions and Rate Constants

Reactions Aqueous Rate Constantsa QLL Rate Constantsb

NO−
3 + hv → NO2 + O− c

NO−
3 + hv → NO−

2 + O(3P) c

NO−
2 + hv → NO + O− d

O− + H2O → .OH + OH− 2.82×10−15 cm3 molec−1 s−1 2.82×10−15 cm3 molec−1 s−1/(volumetric)e

.OH + OH− → O− + H2O 2.00×10−11 cm3 molec−1 s−1 2.00×10−11 cm3 molec−1 s−1/(volumetric)e

O2 + O(3P) → O3 6.64×10−12 cm3 molec−1 s−1 6.64×10−12 cm3 molec−1 s−1/(volumetric)e

O(3P) + NO−
2 → NO−

3 2.46×10−12 cm3 molec−1 s−1 2.46×10−12 cm3 molec−1 s−1/(volumetric)e

O3 + NO−
2 → NO−

3 + O2 6.15 x 10−16 cm3 molec−1 s−1 6.15 x 10−16 cm3 molec−1 s−1/(volumetric)e

NO−
3 + O(3P) → NO−

2+ O2 3.72×10−13 cm3 molec−1 s−1 3.72×10−13 cm3 molec−1 s−1/(volumetric)e

NO−
2+

.OH → NO2 + OH− 3.32×10−11 cm3 molec−1 s−1 3.32×10−11 cm3 molec−1 s−1/(volumetric)e

NO2 + NO2 + H2O → NO−
2 + NO−

3 + 2H+ 1.66×10−13 cm3 molec−1 s−1 1.66×10−13 cm3 molec−1 s−1/(volumetric)e

NO + NO2 + H2O → 2NO−
2 + 2H+ 3.32×10−13 cm3 molec−1 s−1 3.32×10−13 cm3 molec−1 s−1/(volumetric)e

NO + .OH → NO−
2 + H+ 3.32×10−11 cm3 molec−1 s−1 3.32×10−11 cm3 molec−1 s−1/(volumetric)e

NO2+
.OH → NO−

3 + H+ 2.16×10−12 cm3 molec−1 s−1 2.16×10−12 cm3 molec−1 s−1(volumetric)e

NO + NO2 → N2O3 1.83×10−12 cm3 molec−1 s−1 1.83×10−12 cm3 molec−1 s−1/(volumetric)e

N2O3 + H2O → 2NO−
2 + 2H+ 5.3×102 s−1 5.3×102 s−1

2NO2 → N2O4 7.48×10−13 cm3 molec−1 s−1 7.48×10−13 cm3 molec−1 s−1/(volumetric)e

N2O4 + H2O → NO−
2 + NO−

3 + 2H+ 103 s−1 103 s−1

a Aqueous phase reaction rate constants were obtained from Mack and Bolton (1999).
b QLL rate reaction rate constants were quantified by including the “volumetric” factor (Michalowski et al., 2000).
c JNO−

3
values were extrapolated from Qui et al. (2002) and King et al. (2005).

d JNO−
2

was extrapolated from Zuo and Deng, 1999.
e volumetric ∼4.65×10−8 ( cm3 (QLL)

cm3 (atmosphere)
).
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Figure 1 

 

Fig. 1. Simplified schematic diagram illustrating the primary reactions governing NOx release
from a 500µm thick QLL film to the gas phase from nitrate photochemistry. At QLL depths
≤150µm, NO2 photolysis does not occur, while at QLL depths ≤150µm NO2 photolysis occurs.
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Figure 2 
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Fig. 2. The absorption spectrum for NO−
3 and NO−

2 (Gaffney et al., 1992; Zuo and Deng, 1998)
and the normalized solar spectrum at the Earth’s surface from 290 to 400 nm.
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Figure 3 
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Fig. 3. Simulated diurnal summer and springtime volume flux profiles of NO and NO2 just
above the snowpack.
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Figure 4 
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Fig. 4. Calculated summertime gas phase NO and NO2 concentration profiles as a function of
height.
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